
Paranoid Programming Slide: 1 Steve Oualline

Paranoid Programming

Paranoid Programming Slide: 2 Steve Oualline

Me: I've just been asked to do a class at
TicketMaster.

Wife: How did you get TicketMaster to sell
tickets for your class?

Paranoid Programming Slide: 3 Steve Oualline

Paranoia

Just because your paranoid doesn't mean
they aren't out to get you.

Paranoid Programming Slide: 4 Steve Oualline

Paranoia

Murphy's Law:

If anything go wrong it will.

 O'Shea's Law:

Murphy was an optimist

Paranoid Programming Slide: 5 Steve Oualline

Paranoid Programming

Anticipating what can go
wrong and devising ways

to handle it

Paranoid Programming Slide: 6 Steve Oualline

Paranoid Actions

● Think about everything that can go
wrong.

● Avoid trouble if you can.
● Handle anything that comes your way.
● Don't be surprised by anything that

happens to you.

Paranoid Programming Slide: 7 Steve Oualline

Things to Make You Paranoid

● Bad input data
● Handling errors wrong
● Broken programs you must interact with
● Bad Computations
● Bad Security

Paranoid Programming Slide: 8 Steve Oualline

Validate Input

● If Bad Data In --> Bad Data Out
● Programs which can never generate bad

data – will.
● Your program is the one that has the bug

until proven otherwise. (Especially if
you're a junior programmer.)

● Prove the other guy wrong as early and
as visibly as possible.

Paranoid Programming Slide: 9 Steve Oualline

Validate Input

● Remember errors can be introduced any
program that processes a transaction.

● Validation help you locate errors at the
earliest possible time.

● Most importantly it makes sure your
program works and you don't get
blamed for someone else's error.

Paranoid Programming Slide: 10 Steve Oualline

Input Validation Aides

● Start files with magic strings
#Event Configuration File (V1.0)

➔ String tells you the file type
➔ Version information included

Paranoid Programming Slide: 11 Steve Oualline

Other Magic Strings

● Magic Strings to start sections
● Magic Strings to end sections

BEGIN seating chart (id=”the barn”)

 ROWS 32

 SEATS_PER_ROW 10

END seating chart (id=”the barn”)

Magic Record String Record type Unique Name

Paranoid Programming Slide: 12 Steve Oualline

XML Files

● XML is flexible
● XML is verifiable (if you write a definition

file)
● XML is human readable (mostly)
● There are lots of libraries to parse XML

files.

Paranoid Programming Slide: 13 Steve Oualline

Magic Numbers and Data
Structures

/* C Code */
struct record {
 int magic1;
 int data;
 // .. more data
 int magic2;
}

assert((r->magic1 == MAGIC1) &&
 (r->magic2 == MAGIC2))

Paranoid Programming Slide: 14 Steve Oualline

Magic Numbers in Structures

● Someone can change the structure
definition (and not tell you)

● Memory corruption will wipe out the
magic numbers.

● Protects against packing problems.
● Protects against byte order problems.
● In C++ protected against a class being

created with malloc.

Paranoid Programming Slide: 15 Steve Oualline

Dealing with Validation Errors

● Decide on the best course of action
– Send error message to the user
– Let the user retry
– Take a standard fixup
– Abort the operation
– Log the failure
– Raise a security alarm
– Retry until the problem goes away

Paranoid Programming Slide: 16 Steve Oualline

Validation Problems

I took my GPS to Death Valley and it died.

Paranoid Programming Slide: 17 Steve Oualline

Badwater
Death
Valley

My GPS is here

Sea Level

The GPS fails if
altitude is < 0.

Paranoid Programming Slide: 18 Steve Oualline

Failure Mode

● Satellite status screen – Everything OK – I
have a 3d fix.

● Map view – Everything is OK, but frozen.
– (It's still 23 miles to the motel.)

● Coordinate page – Wrong location and
altitude of 0.

● Reset – map view now shows that the
GPS has no fix.
– Satellite screen still shows 3d fix

Paranoid Programming Slide: 19 Steve Oualline

Report an Error to the User

● Error messages should be clear.
– Begin each error with the word: “Error”

● Keep things simple – Remember the
person you are dealing with may have
limited English.

● Give the user somewhere to go or
something to do if possible.

Paranoid Programming Slide: 20 Steve Oualline

Obscure by Design

● Error message:
Error: License file out of phase

● Designed to result in a technical support
call, not avoid one.

● Much clearer (but useless version):
Error: Security violation.
Report yourself to customer service
immediately.

Paranoid Programming Slide: 21 Steve Oualline

Take a standard fixup

● We're glad you want 10,000 seats for this
concert.

● But the theater only hold 1,500.
● Besides there's a limit of 10.
● Order reduced to 10, do you want to

continue?

Paranoid Programming Slide: 22 Steve Oualline

Abort the Operation

● Before you abort
– Log the error
– Tell the user about the error

Something has gone horribly wrong with
your order. Sorry but we have to abort
and return to the main page.

Paranoid Programming Slide: 23 Steve Oualline

Sometimes Aborting is Bad

● The hardware platform had been
upgraded.

● One process ran longer than normal.
● An overflow exception occurred.
● There was no general exception handler.
● The default exception handler halted the

processor.

Paranoid Programming Slide: 24 Steve Oualline

The Platform

Arian 4 Arian 5
● One of the

processor's
jobs:

● Keep the
rocket
pointed into
the air!

Paranoid Programming Slide: 25 Steve Oualline

The System Did Not Crash

● The launch director blew it up before it
could hit the ground!

Paranoid Programming Slide: 26 Steve Oualline

All Failures goto the Logs

● Logs are especially useful in a web
environment.

● Logs let you spot not only errors but also
potential problems.

● You can do trend analysis on log data.
● More on logs later when we discuss

security.

Paranoid Programming Slide: 27 Steve Oualline

Raising a Security Alert

● I've have 20 orders in 5 minutes from the
same user on the same IP address.

● No one can type that fast.
● Bot suspected.
● Note: Security alerts must be raised in a

way in which they are acted upon. (More
on this later.)

Paranoid Programming Slide: 28 Steve Oualline

Alert Failure

● Phone company does a power failure drill
and training sessions

1.Power failure is simulated. Switch to city
power turned off.

2.Battery backup kicks in.

3.Backup procedures are tested

4.All mid and senior technicians go to class for
a review of power failure procedures.

➔ Anyone see what step was left out?

Paranoid Programming Slide: 29 Steve Oualline

Alert Failure

● After the drill someone forgot to switch on the
city power.

● Batteries ran out of power.

● Technicians on site did not know what to do.
(They weren't senior enough to require
training.)

● Everyone who knew how to handle the problem
was out of the office (at training).

● Result: No phone service for a major part of
New York for almost a full day.

Paranoid Programming Slide: 30 Steve Oualline

Playing well with others

● What do you do when a program you
depend on fails?
– Fail as well.
– Keep trying until things work.
– Try a backup system.

Paranoid Programming Slide: 31 Steve Oualline

Keep Trying

while (1) {

 $connect = DBI->connect($stuff);

 if (defined($connect)) {

 last;

 }

 log_problem(“No db connection”);

 sleep(DB_WAIT_TIME);

}

Paranoid Programming Slide: 32 Steve Oualline

The Paranoid Database Runner

The Database Must Run!!!

1. Start database

2. If DB crashes, wait 30 seconds, restart

3. If DB hangs kill it nicely

1. Wait up to 5 minutes. (Give DB time to stop.)

2. Did DB die – Yes – Restart

3. No – Kill harder (SIGKILL)

4. Wait 30 seconds -- Restart

Paranoid Programming Slide: 33 Steve Oualline

The DB Must Run

● Has the DB crashed more than 4 times in
the last 30 minutes?

1. Kill DB if needed

2. Delete the entire database

3. Start DB Program

4. Recreate database from backup.

Paranoid Programming Slide: 34 Steve Oualline

Transaction Failures

● You are in the middle of a transaction.
● The database fails.
● What do you do?
● If you are selling tickets:

1. Possibly sell the same ticket twice

2. Maybe leave a seat unsold

Paranoid Programming Slide: 35 Steve Oualline

The answer obviously is:
● Sell the same seat twice

– You get double the revenue
– You can also sell tickets to the fight that's

going to break out when the two ticket
holders confront each other.

Paranoid Programming Slide: 36 Steve Oualline

How do you know a transaction
occurred

● I gave the DB a COMMIT command
– The data could be in memory and not on

disk.

● I read the data after I did the COMMIT.
– You could have just read a in-memory copy.

● The DB says it wrote the data.
– The OS could buffer the I/O in memory.

● After the COMMIT I did a fsync.
– The disk has an on-board cache.

Paranoid Programming Slide: 37 Steve Oualline

How do you know a transaction
occurred

● I got out a hammer and chisel and carved
it in stone.
– An earthquake could cause the stone to

shatter.

Paranoid Programming Slide: 38 Steve Oualline

Does Delete mean Delete

● Does “rm file” get rid of the data.
– No! It just puts the blocks in the free pool.

● Does “dd if=/dev/zero of=file” wipe out
the data?
– Maybe not. On some file systems data is

written to a journal first, then the file.
– Some file system have a versioning system

built-in. You can go back in time.

Paranoid Programming Slide: 39 Steve Oualline

Validate Use Input

● Turn on Perl's taint (-T) mode.
– If you don't know what taint mode is, I'm

going to get even more paranoid than I
already am.

Paranoid Programming Slide: 40 Steve Oualline

Check for permitted, not
excluded

● Bad: Path can not contain “/../”

Hackers: Use “/%2E%2E/” instead.

Paranoid Programming Slide: 41 Steve Oualline

Check for permitted, not
excluded

● Bad: The “number of seats” field must not
contain letters or spaces.
– I'd like -100 seats please at $29.95 a set.

That's -2,995.00. So you owe me. Please
send me a check.

● Good: The number is digits only.
if ($number !~ /^\d+$/) {

 # Handle invalid data

}

Paranoid Programming Slide: 42 Steve Oualline

Validate Limits

● What's wrong with the following set of
checks?
if ($number !~ /^\d+$/) {

 # Error

}

if ($number > LIMIT) {

 # Error

}

Paranoid Programming Slide: 43 Steve Oualline

The Problem

● The following value is valid (at least in C
and C++)

4294967280

● In hex this number is:

0xFFFFFFF0

● Converting the number to decimal:

long int i = atol(4294967280);

● What does “i” contain?

-16

Paranoid Programming Slide: 44 Steve Oualline

You can't trust the machine to
add 1 + 1.

True false test:

a) 1 + 1 = 2

b) 1/3 + 1/3 = 2/3

 0.3333

+0.3333

=0.6666

This is not 2/3 (0.6667)

Paranoid Programming Slide: 45 Steve Oualline

You Can't Trust What You Can't
See.

● Make out visible (Human Readable)
● You can't debug what you can't see

0000000 4b50 0403 0014 0000 0000 25f4 386c 2633

0000020 a8ac 002f 0000 002f 0000 0008 0000 696d

0000040 656d 7974 6570 7061 6c70 6369 7461 6f69

0000060 2f6e 6e76 2e64 616f 6973 2e73 706f 6e65

0000100 6f64 7563 656d 746e 702e 6572 6573 746e

Paranoid Programming Slide: 46 Steve Oualline

Bad Memories

● What happens in perl when you do the
following:

my @a; my $i;

$i = @a[32000];

● What happens when you do:

$a[3200000] = 5;

● How do you trap these types of errors?

Paranoid Programming Slide: 47 Steve Oualline

Bad Memories

● What happens when you run out of
memory?
– You can trap out of memory errors in Perl,

but you have to be clever about it.
– Use $^M to allocate an emergency memory

buffer.

– Then trap $SIG{_ _DIE_ _}.

Paranoid Programming Slide: 48 Steve Oualline

Running Out of Disk Space

● What do you do:
– Abort.
– Wait till space frees up.
– Delete old data and hope space frees up.
– Output the error message “Disk space 0K”.

Paranoid Programming Slide: 49 Steve Oualline

PostgreSQL and Disk Space

● What happens when the DB runs out of
disk space?

● PostgreSQL – You loose the DB.

if (free_disk_space(DB_DISK) < MIN_FREE) {

 stop_inserting_records();

 delete_old_db_records();

 start_inserting_records();

}

Paranoid Programming Slide: 50 Steve Oualline

Disk Failures

● What happens if a disk goes bad?
● Do you have a backup for your critical

data?
● How do you detect impending disk

failure?
● Do you use the SMART capability of the

disks?

Paranoid Programming Slide: 51 Steve Oualline

Backup – What's Backup

● Major computer maker (at the
time)

● Kept NO backups at all.
● I wrote a memo to the VP

engineering:

“A fire on the 15th floor will cause
all our software to be destroyed.
We need backup.”

● They installed fire
extinguishers.

Paranoid Programming Slide: 52 Steve Oualline

Disk Backup

● What is your backup policy?
● Is it written down?
● Has the backup system been tested?

– Incomplete backups
– Corrupt Backups

Paranoid Programming Slide: 53 Steve Oualline

Dealing with Bad Disks
Procedure for dealing with bad disks

1.Remove disk from computer

2.Replace with good disk

3.If under warranty send to manufacturer

4.If past warranty pound it with a large
hammer until it no longer resembles a
disk
 It will help avoid the temptation to reuse the

disk
 Plus it will make you feel better.

Paranoid Programming Slide: 54 Steve Oualline

Hardware Backups

● System redundancy
● UPS and other emergency equipment.
● Don't buy cheap emergency equipment

– Major cell phone maker
– UPS systems bought used, very cheap.
– 3 out of 4 unplanned outages for the year

caused by UPS failure
– 1 unplanned outage caused by the UPS

catching on fire.

Paranoid Programming Slide: 55 Steve Oualline

Paranoid Drill

● Where's the nearest fire exit?
● Where's the nearest fire extinguisher?

– Bonus: Did you check the inspection tag on
it?

– Double bonus if you've ever reported an
expired tag.

● The toilet is overflowing. Water is going
down the hall toward the server room.
Who do you call?
– PS: Your computer's down. No looking things

up on it.

Paranoid Programming Slide: 56 Steve Oualline

Data Corruption

● Can you detect data corruption?
– Magic Numbers
– Checksums

● When is data backed up? How? By who?
Where?

● RAID is not the answer to backups
– A good RAID system means that you have

multiple copies of the same bad data.

Paranoid Programming Slide: 57 Steve Oualline

Security

● TicketMaster stores credit card
information.
– Loss of this information could result in

massive identity theft
– Loss of confidence in TicketMaster
– Loss of future business
– Loss of revenue
– Recovery costs

Paranoid Programming Slide: 58 Steve Oualline

Security

● Credit card information should be the
second most secure information in the
company

● The most secure information should be:

The Log Files

Paranoid Programming Slide: 59 Steve Oualline

Log Files

● Tell you who tried to break in and how
● Tell you events leading up to a problem
● Allow you to identify trends and tune your

system.
● Audit Trail

Paranoid Programming Slide: 60 Steve Oualline

Protecting Security Logs

● Log information should go to a secure
server.
– All other services turned off (deaf and dumb)
– Physically secure

● Who should see the log files?
– Only a trusted few

● Who can modify the log files?
– Only God with permission from two superiors.

Paranoid Programming Slide: 61 Steve Oualline

Analyze the Information in the
Logs

Paranoid Programming Slide: 62 Steve Oualline

Respond Security Incidents

● Identify who is responsible for security
● Have a written procedure for dealing with

security problems.

Paranoid Programming Slide: 63 Steve Oualline

The EE Lab Incident

● EE Lab door is alarmed to prevent
equipment from walking away.

● A student decide to see what would
happen when the alarm was triggered.

● Security arrived in 2 minutes
– Then didn't know what to do!

● So the students milling around told them.
– and they followed their suggestions.

Paranoid Programming Slide: 64 Steve Oualline

EE Lab Incident

● One student picked up a very expensive
piece of test equipment and walked over
to the confused security guards:

“I think you should write down everybody's
name who's here”

He then walked away with his loot without
giving his name. (He returned it an hour
later.)

Paranoid Programming Slide: 65 Steve Oualline

The Phone Maker Incident

● New directory of System Administration
decides to show his people he knows
what he is doing.

● He hires a security penetration test firm
without telling anyone else.

Paranoid Programming Slide: 66 Steve Oualline

The Incident

9:00 Penetration test team is let into the
building by the director.

9:05 They unpack their equipment

9:30 Testing starts

9:31 The pagers of the duty sysadmin, the
backup sysadmin, the security sysadmin,
backup security sysadmin, and three
other senior administrators go off.

Paranoid Programming Slide: 67 Steve Oualline

The Incident

9:31-9:45 Sysadmins analyze the log files
and determine that they have a security
breach. They assemble in the “War
Room” and pool their findings.

9:45 Security is called and told to assemble
the strike team.

9:50 The conference room is raided by 20
security guards and three sysadmins.

Paranoid Programming Slide: 68 Steve Oualline

Security Response

● Every step of the security response
followed a written procedure.

● The procedure (and the call list) was on a
small card everyone kept on the back of
their badges.

Paranoid Programming Slide: 69 Steve Oualline

Penetration Testing Nightmare

● Company hires security penetration
testing firm.

● Company does not tell them that they are
in a building that also houses MI5.

● MI5 picks up the team 3 blocks away.
● The second they walk in the door they are

surrounded by heavily armed, very
serious guards.

Paranoid Programming Slide: 70 Steve Oualline

Security Procedures

1. Think about security problems before
they happen.

2. Have multiple checks for security
violations.

3. Make sure security violations are
responded to.

4. Decide what the response is before the
incident occurs.

5. Drill, review, and revise procedures.

Paranoid Programming Slide: 71 Steve Oualline

Who will watch the watchers

● Who gets access privileges?
● How is this decided?
● How are access privileges revoked?
● Are key security people forced to take

vacations?

Paranoid Programming Slide: 72 Steve Oualline

Secure Transmission --
Encryption

● German assumption:

A machine cypher can
not be broken by hand.

Paranoid Programming Slide: 73 Steve Oualline

The flaws in the assumption

1. If you're stupid
enough a machine
cypher can be broken
by hand.

2. Machine cyphers can
be broken by
machines.

Paranoid Programming Slide: 74 Steve Oualline

Secure Data Transmission

1. Assume hackers have access to your
source code.

2. Use only well tested and well known
encryption libraries. (Don't make up your
own.)

3.Have your handling of sensitive data
reviewed by someone who knows
security.

Paranoid Programming Slide: 75 Steve Oualline

Perl Paranoia

● Use all the built-in features programming
features of Perl:

#!/usr/bin/perl -T

(Taint)

use strict;

use warnings;

Paranoid Programming Slide: 76 Steve Oualline

Prototypes

● Use prototypes

1. It makes sure that you use the correct
number of parameters.

2. It performs very simple validation on the
types of parameters you can pass in.

Paranoid Programming Slide: 77 Steve Oualline

Perl and Error Checking

● Default (C style) Error handling
– Functions return an error code (not all of

them, but most of them)
– What that code is is sometime wildly

inconsistent.
– Code must test each function call for error

return and propagate it up the call chain.

Paranoid Programming Slide: 78 Steve Oualline

Perl and Error Checking

● Problems with (C style) Error handling
– Lots of code required to do error checking.
– Programmers must deal with inconsistent

error returns.
– Problems occur when programmer get lazy

and fail to error check everything.

Paranoid Programming Slide: 79 Steve Oualline

Perl Exceptions

use Error;
try {
 do_something();
 if ($bad) {
 die(“Bad thing”);
 }
 if ($not_so_bad) {
 throw Error::Simple
 -text => “Not so bad”;
 }
}

Paranoid Programming Slide: 80 Steve Oualline

Perl Exceptions

catch Error::Simple with {
 my $e = shift;
 print “Problem: $e->text\n”;
}
otherwise {
 # Problem, but don't halt the cpu
}
finally {
 clean_up();
};

Paranoid Programming Slide: 81 Steve Oualline

Perl Exceptions

● Interface is very clean
● Less code is required.
● You can handle lots of different types of

exceptions
● If you're going to use, use it everywhere.

– Inconsistency will kill you
– When I transitioned code from "error return"

to exception, I named all exception throwing
functions {foo}_e.

Paranoid Programming Slide: 82 Steve Oualline

Consistency

● “In order to make things simple, this book
has been split into three sections 1, 2,
and C.”

 sub validate_customer_name($)

 sub validate_country($)

 sub validate_state($)
● What the name of the function to check

the credit card number?

Paranoid Programming Slide: 83 Steve Oualline

Key to Consistency

1.Do things the same way every time.

2.Write down the methodology you are
using.

Unwritten rules mean that you have no
rules!

3. Perform reviews to enforce the rules.

Paranoid Programming Slide: 84 Steve Oualline

Small Example (Consistency)

sub foo($$$)

{

 my $name = shift; # Customer name

 my $card = shift; # Encrypted cc #

 my $exp = shift; # Exp date (str)

Paranoid Programming Slide: 85 Steve Oualline

The Rules

1.All subroutines must use prototypes.

2.All parameters are assigned names at the
beginning of the function.

3.The shift method is used to name each
parameter.

4.All parameter declarations must have a
comment following them describing the
parameter.

Paranoid Programming Slide: 86 Steve Oualline

Perl and the Database

● School to parent: Did you really name
your son:
John'; DROP TABLE STUDENTS;

● Always use prepared statements:
my $state = $dbh->prepare(

 “SELECT * FROM trans WHERE id = ?”);

my $result = $state->execute(@values);

Paranoid Programming Slide: 87 Steve Oualline

Standards and Documentation

1.Standards must be written down.

2.The must be available to the
programmers and followed.

3.You must be able to implement a
standard.

4.Reviews must be conducted to make sure
that people are in compliance with the
standard.

Paranoid Programming Slide: 88 Steve Oualline

Reviews

● Linus's Law: Given enough eyeballs, all
bugs are shallow. -- Eric S. Raymond

● Reviews make for better, more secure
(paranoid) programs.

● Reviews make for better, more secure
(paranoid) programmers.

Paranoid Programming Slide: 89 Steve Oualline

Checklists

● Checklists assure that procedures are
consistent.

● They help make sure that all the steps
are followed.

● Also by writing things down, other people
can review them.

Paranoid Programming Slide: 90 Steve Oualline

Reviewing the Checklist

You must review checklists to assure that:
● They are current.
● They are correct.
● They are relevant.

Paranoid Programming Slide: 91 Steve Oualline

The Wrong Checklist

● Air Canada flight 143 had a broken gas
gage. (Actually two out of three were
broken but in a way that they couldn't tell
how much gas was on board.) FAILURE
#1.

● Minimum flight requirements for a Boeing
767 state that must a have working gas
gage.

● Pilot decided to use the alternate way of
telling how much gas was aboard.

● FAILURE #2: Did not honor the first
checklist.

Paranoid Programming Slide: 92 Steve Oualline

Dipstick Method

According to the checklist provided by the
airline the following procedure must be
used:

1. Put a dipstick in the tank.

2. Convert gallons of fuel to pound of fuel.

3. Determine the number of additional
pound of fuel needed.

4. Convert pounds of fuel to gallons of gas.

5. Get that much gas.

Paranoid Programming Slide: 93 Steve Oualline

Double Checking

● Ground Crew double checked all the
calculations using a second,
independently created checklist.

● Both Pilot and Ground Crew Chief
concluded that the plane had enough gas
to reach the next stop:

22,300 Pounds

Paranoid Programming Slide: 94 Steve Oualline

Wrong Checklist

● The 767 is an all metric aircraft

It needed 22,300 KG of fuel
● FAILURE#3: Using the wrong

checklist.

Paranoid Programming Slide: 95 Steve Oualline

The flight

● The bad news: Half way through the
flight, the fuel pumps alarm: We're
sucking air.

● The good news: The pilot flys glider
planes as a hobby.

● The bad news: When the engine goes out
the glass cockpit goes black.

● The good news: A few instruments stay
up on batteries.

Paranoid Programming Slide: 96 Steve Oualline

The flight

● The bad news: They can not make the
nearest airport.

● The good news: The co-pilot trained at a
nearby military airport, now abandon.

● The bad news: The “abandon” air strip
was being used for drag racing.

● The good news: Race cars can get out of
the way fast.

Paranoid Programming Slide: 97 Steve Oualline

Results

● The plane landed safely.
● There was a minor fire in the nose wheel

(which didn't lock).
● The racers had fire extinguishers to put it

out.
● Some minor injuries caused by people

jumping out the back of the plane.

Paranoid Programming Slide: 98 Steve Oualline

Result

Paranoid Programming Slide: 99 Steve Oualline

Postscript

● Air Canada sent out a crew of mechanics
to inspect the aircraft.

● They then send out a second crew to
rescue the first one because:

Paranoid Programming Slide: 100 Steve Oualline

They Ran Out of Gas

Paranoid Programming Slide: 101 Steve Oualline

Learn from Your Mistakes

● When something fails find out why!
● Figure out how you got here.
● Is there a rule that would prevent this

problem.
● Publish the results.
● Possibly adjust the standard.
● Make the same mistake once.

That way you only make new mistakes from
then on.

Paranoid Programming Slide: 102 Steve Oualline

Summary

● Assume that the everyone is out to get
you.

(It's better to be pleasantly surprised that
rudely awakened.)

● Make sure you think of everything that
can go wrong and plan as much of it as
you can.

● Perform reviews so it's not just you that's
paranoid.

Paranoid Programming Slide: 103 Steve Oualline

Summary

● Have a written security plan for security
problems.

● Assume that the hackers have a copy of
your code.

● Have irregular security drills.
● Review security policies and procedures.

Paranoid Programming Slide: 104 Steve Oualline

Programming

● Validate everything
● Test for all possible errors and most of

the impossible ones.
● Use all the Perl tricks to make your code

better:
– use strict;
– use warnings;
– Turn on taint (-t)
– Use prototypes.

Paranoid Programming Slide: 105 Steve Oualline

Programming

● Use only prepared statements to access
the database.

● Use the Perl “Error” module to improve
exception handling.

Paranoid Programming Slide: 106 Steve Oualline

Paranoia is a Group Effort

● Spread the paranoia
● Hold regular reviews of your code to

make everyone as paranoid as you are.
● Review coding procedures as well as

code.
● It's better to be afraid in a group than

alone.

Paranoid Programming Slide: 107 Steve Oualline

Questions?

